АННОТАЦИЯ к учебному пособию

МОДЕЛИРОВАНИЕ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ И АЛГОРИТМОВ РЗ И А В ПРОГРАММНОМ КОМПЛЕКСЕ *PSCAD*

Нижегородский государственный технический университет им. Р.Е. Алексеева

Авторы: Куликов Александр Леонидович, Лоскутов Антон Алексеевич

В учебном пособии содержится описание основных принципов работы с прикладным программным комплексом PSCAD и библиотеки Master Library, предназначенной для моделирования электротехнических устройств и систем. Пособие предназначено для студентов, обучающихся по направлению подготовки 13.04.02 – «Электроэнергетика и электротехника», по всем профилям подготовки.

В книге изложены теоретические сведения, методы, примеры расчета и прикладные задачи по имитационному моделированию электротехнических систем, а также алгоритмов логической части устройств релейной защиты и автоматизации электроэнергетических систем.

Каждая из представленных практических работ последовательно описывает новые возможности работы с программным комплексом PSCAD от простого к сложному.

Использование программного комплекса PSCAD способствует развитию у студентов способностей и умений решения практических задач с использованием имитационных моделей, позволяющих воспроизводить процессы, близкие к реальным.

Книга содержит 15 разделов, 489 рисунков, 62 таблицы, 50 библиографических источников.

Название основных разделов:

- 1. Основные понятия о моделировании.
- 2. Основы работы с PSCAD.
- 3. Исследование электромагнитных переходных процессов на примере простейшей системы электроснабжения.
- 4. Моделирование алгоритма трехступенчатой токовой защиты воздушной линии электропередачи и автоматического повторного включения.
- 5. Моделирование алгоритма направленной токовой защиты воздушной линии электропередачи.
 - 6. Моделирование алгоритма дифференциальной защиты трансформатора 110/10кВ.
 - 7. Моделирование алгоритма дифференциальной защиты линии электропередачи 110 кВ.
 - 8. Моделирование алгоритма дистанционной защиты линии электропередачи 220 кВ.
 - 9. Моделирование насыщения трансформаторов тока.
 - 10. Моделирование алгоритма автоматического ввода резерва.
 - 11. Моделирование алгоритма автоматической частотной разгрузки.
 - 12. Моделирование регулятора напряжения типа РПН.
 - 13. Моделирование динамического компенсатора реактивной мощности.
- 14. Определение места повреждения в сети с заземленной нейтралью с использованием PSCAD и программы FASTVIEW.
 - 15. Реализация множества экспериментов с получением статистических данных.

ОГЛАВЛЕНИЕ

ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ	10
ВВЕДЕНИЕ	13
1. ОСНОВНЫЕ ПОНЯТИЯ О МОДЕЛИРОВАНИИ	16
1.1. Назначение моделирования в электроэнергетике	16
1.2. Цели и задачи моделирования	
1.3. Классификация моделей	
1.4. Имитационное моделирование	19
1.5. Требования к математическим моделям	21
1.6. Вычислительные методы моделирования	
1.7. Оценка правильности модели	
2. ОСНОВЫ РАБОТЫ С <i>PSCAD</i>	
2.1. Знакомство с программным интерфейсом <i>PSCAD</i>	27
2.2. Начало работы с <i>PSCAD</i>	
2.3. Обзор основной библиотеки Master Library в PSCAD	
2.4. Принципы создания модели	
3. ИССЛЕДОВАНИЕ ЭЛЕКТРОМАГНИТНЫХ ПЕРЕХОД	
ПРОЦЕССОВ НА ПРИМЕРЕ ПРОСТЕЙШЕЙ СИСТ	
ЭЛЕКТРОСНАБЖЕНИЯ	
3.1. Исходные данные для базовой модели	
3.2. Руководство к созданию модели в лаборатории	
3.2.1. Трехфазный источник напряжения (Three-Phase V	_
Source)	
3.2.2. Выключатель (Three-Phase Breaker) 3.2.3. Измерители (Multimeter)	
3.2.4. Шины (Bus)	
3.2.5. Воздушная ЛЭП (Overhead Line)	
3.2.6. Нагрузка (Fixed Load)	
3.2.7. Трансформатор (3-Phase 2-Winding Transformer)	
3.2.8. Кабельная линия (Cable)	
3.2.9. Асинхронная машина (Wound Rotor Machine)	
3.2.10. Короткозамыкатель (Three-Phase Fault)	72
3.2.11. Осциллографирование (Curve)	
3.2.12. Создание компоненты	
3.2.13. COMTRADE регистратор (COMTRADE Recorder)	
3.3. Экспериментальная часть	
4. МОДЕЛИРОВАНИЕ АЛГОРИТМА ТРЕХСТУПЕНЧАТОЙ ТОК	
	И
АВТОМАТИЧЕСКОГО ПОВТОРНОГО ВКЛЮЧЕНИЯ	ბნ

4.1. Краткие теоретические сведения	86
4.1.1. Схемы соединения трансформаторов тока и реле	86
4.1.2. Трехступенчатые токовые защиты	88
4.1.3. Автоматическое повторное включение	
4.1.4. Защита от однофазных замыканий на землю	93
4.2. Пример расчета	
4.2.1. Параметры системы электроснабжения	96
4.2.2. Выбор защит и расчет уставок	97
4.3. Руководство к созданию модели (по примеру п. 4.2)	102
4.3.1. Параметры моделируемого первичного оборудования	
4.3.2. Короткозамыкатель (Three-Phase Fault)	103
4.3.3. Переключатель точек короткого замыкания	
4.3.4. Моделирование измерений, преобразования, сбора и обра	
аналоговой и дискретной информации по присоединению	
4.3.5. Универсальный измеритель тока	
4.3.6. Измерительные органы релейной защиты	
4.3.7. Моделирование алгоритма релейной защиты 1	
4.3.8. Моделирование алгоритма релейной защиты 2	
4.3.9. Моделирование алгоритма релейной защиты 3	
4.3.10. Моделирование алгоритма релейной защиты 4	
4.3.11. Алгоритм выявления однофазных замыканий на землю	
4.4. Экспериментальная часть	124
5. МОДЕЛИРОВАНИЕ АЛГОРИТМА НАПРАВЛЕННОЙ ТОКО	ОВОИ
ЗАЩИТЫ ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ	127
5.1. Краткие теоретические сведения	127
5.1.1. Принцип действия ТНЗ	127
5.1.2. Схемы включения реле направления мощности	
5.1.3. Выбор уставок срабатывания	131
5.1.4. Мертвая зона	132
5.2. Пример расчета	132
5.2.1. Параметры системы электроснабжения	133
5.2.2. Выбор защит и расчет уставок	135
5.2.3. Итоги расчета	140
5.2.4. Расчет мертвой зоны	
5.3. Руководство к созданию модели (по примеру п. 5.2)	141
5.3.1. Параметры моделируемого первичного оборудования	142
5.3.2. Переключатель точек короткого замыкания	142
5.3.3. Измерение угла сдвига между токами и напряжениями	
5.3.4. Фазометр	
5.3.5. Моделирование алгоритма релейной защиты 1	
5.3.6. Моделирование алгоритма релейной защиты 2	154

	5.3.7. Моделирование алгоритма релейной защиты 3	155
	5.4. Экспериментальная часть	
6.	МОДЕЛИРОВАНИЕ АЛГОРИТМА ДИФФЕРЕНЦИА	\ ЛЬНОЙ
	ЗАЩИТЫ ТРАНСФОРМАТОРА 110/10 КВ	158
	6.1. Краткие теоретические сведения	158
	6.1.1. Релейная защита трансформатора	
	6.1.2. Назначение дифференциальной защиты трансформатора	
	6.1.3. Особенности дифференциальной защиты трансформато	
	6.1.4. Токи небаланса	•
	6.1.5. Виды и характеристика ДЗТ	164
	6.2. Выбор уставок ДЗТ	165
	6.2.1. Расчет общих уставок	
	6.2.2. Расчет уставок дифференциальной токовой отсечки (ДЗ	T-1). 168
	6.2.3. Расчет уставок чувствительной дифференциальной за	
	торможением (ДЗТ-2)	169
	6.2.4. Сигнализация небаланса в плечах дифференциальной	
	(ДЗТ-3)	
	6.3. Пример расчета дифференциальной защиты двухобме	
	трансформатора	
	6.3.1. Исходные данные для расчета	
	6.3.2. Выбор общих параметров дифференциальной защиты	
	6.3.3. Выбор уставок дифференциальной отсечки (ДЗТ-1)	
	6.3.4. Выбор уставок чувствительной дифференциальной	
	(ДЗТ-2)	
	6.3.5. Проверка чувствительности дифференциальной защиты	
	6.3.6. Построение комбинированной тормозной характо	-
	дифференциальной защиты трансформатора	
	6.4. Исходные данные для моделирования	
	6.5. Руководство к созданию модели 1 6.5.1. Параметры моделируемого первичного оборудования	
	6.5.2. Переключатель места короткого замыкания	
	6.5.3. Моделирование измерителя тока	
	6.5.4. Моделирование алгоритма дифференциальной токовой	
	(ДЗТ-1)	
	6.5.5. Вывод осциллограмм	
	6.6. Руководство к созданию модели 2	
	6.6.1. Параметры модели 2	
	6.6.2. Моделирование измерителя тока	
	6.6.3. Моделирование алгоритма дифференциальной	
	защиты	
	6.6.4. Вывод осциллограмм	

	6.7. Экспериментальная часть	193
7.	. МОДЕЛИРОВАНИЕ АЛГОРИТМА ДИФФЕРЕНЦІ	ИАЛЬНОЙ
	ЗАЩИТЫ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ 110 КВ	194
	7.1. Краткие теоретические сведения	194
	7.1.1. Принцип работы дифференциальной защиты линии	
	7.1.2. Дифференциальное реле с торможением	
	7.1.3. Расчет уставок ДЗЛ	199
	7.2. Исходные данные для моделирования	200
	7.3. Руководство к созданию модели	201
	7.3.1. Параметры моделируемого первичного оборудования	202
	7.3.2. Выбор вида и места короткого замыкания	202
	7.3.3. Моделирование измерителя тока	
	7.3.4. Отображение первичных и вторичных токов	
	7.3.5. Моделирование алгоритма дифференциальной	
	линии	
	7.3.6. Вывод результирующих осциллограмм	
	7.4. Экспериментальная часть	210
8.	. МОДЕЛИРОВАНИЕ АЛГОРИТМА ДИСТАНЦИОННОЙ	
	ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ 220 КВ	211
	8.1. Краткие теоретические сведения	211
	8.1.1. Основное понятие о дистанционной защите	
	8.1.2. Теория ступенчатых защит	212
	8.1.3. Теория пусковых защит	216
	8.2. Исходные данные для моделирования	220
	8.3. Расчет уставок дистанционной защиты	221
	8.3.1. Расчет первой ступени дистанционной защиты	
	8.3.2. Расчет второй ступени дистанционной защиты	
	8.4. Руководство к созданию модели	
	8.4.1. Параметры моделируемого первичного оборудования	
	8.4.2. Создание элементов для реализации работы Д3	
	8.4.3. Создание компоненты обработки сигналов	
	8.4.4. Создание компоненты «схема защиты»	
	8.4.5. Отображение результатов замера сопротивления	
	8.4.6. Создание компоненты «Дистанционная защита»	
^	8.5. Экспериментальная часть. Анализ результатов моделиров	
9.		
	ТОКА	
	9.1. Краткие теоретические сведения	244
	9.1.1. Общие положения	
	9.1.2. Принцип работы трансформатора тока	
	9.1.3. Причина погрешности ТТ	247

9.1.4. Работа ТТ в режиме глубокого насыщения	250
9.2. Исходные данные для базовой модели	
9.3. Руководство к созданию модели	252
9.4. Моделирование первого случая: влияние смещения посто	
составляющей первичного тока	
9.5. Моделирование второго случая: повторное включение (АПВ)	линии
при наличии повреждения	265
9.6. Моделирование третьего случая: влияние вторичного п	олного
сопротивления	
10. МО́ДЕЛИРОВАНИЕ АЛГОРИТМА АВТОМАТИЧЕСКОГО В	
PE3EPBA	
10.1. Краткие теоретические сведения	
10.1.1. Требования к устройствам АВР	
10.1.2. Классификация устройств АВР	
10.1.3. Пусковые органы и выбор параметров УАВР	
10.2. Расчет параметров АВР	
10.3. Руководство к созданию модели	
10.3.1. Параметры моделируемого первичного оборудования	
10.3.2. Моделирование измерителя тока	
10.3.3. Моделирование простого алгоритма релейной защиты	
10.3.4. Моделирование измерителя напряжения	
10.3.5. Моделирование алгоритма АВР одностороннего действи	
10.3.6. Моделирование алгоритма АВР двухстороннего действи	
10.4. Экспериментальная часть	
10.5. Расширение работы алгоритма	
11. МОДЕЛИРОВАНИЕ АЛГОРИТМА АВТОМАТИЧЕ	203 СКОЙ
ЧАСТОТНОЙ РАЗГРУЗКИ	286
11.1. Краткие теоретические сведения	286
11.1.1. Общие положения автоматической частотной разгрузки.	
11.1.2. Основные требования к АЧР	
11.1.3. Принципы построения АЧР	
11.1.4. Уставки АЧР	
11.1.5. Частотное АПВ	
11.2. Руководство к созданию модели	
11.2.1. Параметры моделируемого первичного оборудования	
11.2.2. Моделирование дефицита мощности	
11.2.3. Панель управления выключателями	
11.2.4. Функциональная зависимость частоты от акт	
МОЩНОСТИ	
11.2.5. Измерение и оценка частоты	
11.2.6. Мониторинг изменения частоты	300

11.2.7. Моделирование алгоритма работы АЧР1	. 302
11.2.8. Моделирование алгоритма работы АЧР2	
11.2.9. Проверка срабатывания очередей АЧР1 и АЧР2	
11.3. Экспериментальная часть	
12. МОДЕЛИРОВАНИЕ РЕГУЛЯТОРА НАПРЯЖЕНИЯ ТИПА РПН .	. 308
12.1. Краткие теоретические сведения	. 308
12.2. Руководство к созданию модели	.313
12.2.1. Принцип моделирования регулирования напряжения	
понижающей подстанции	.313
12.2.2. Моделирование алгоритма работы РПН	
12.2.3. Создание компоненты логики работы РПН	
12.3. Экспериментальная часть	. 322
13. МОДЕЛИРОВАНИЕ ДИНАМИЧЕСКОГО КОМПЕНСАТО РЕАКТИВНОЙ МОЩНОСТИ	ЭРА . 323
13.1. Краткие теоретические сведения	323
13.1.1. Назначение компенсации реактивной мощности	
13.1.2. Общие положения автоматики компенсации реакти	
мощности	
13.1.3. Места установки и типы источников реактивной мощности	. 32 i
13.1.4. Автоматическое регулирование мощности конденсатор	HLIX
батарей	
13.2. Расчет необходимой мощности конденсаторной установки	
13.3. Руководство к созданию модели 1	
13.3.1. Параметры моделируемого первичного оборудования	
13.3.2. Моделирование алгоритма регулировки емк	
конденсаторной установки	
13.3.3. Описание алгоритмов вычисления	
13.3.4. Экспериментальная часть	
13.3.5. Возможность расширения работы алгоритма	
13.4. Руководство к созданию модели 2	
13.4.1. Параметры моделируемого первичного оборудования	
13.4.2. Моделирование алгоритма и логики работы автома	
регулирования компенсации реактивной мощности	
13.4.3. Экспериментальная часть	
14. ОПРЕДЕЛЕНИЕ МЕСТА ПОВРЕЖДЕНИЯ В СЕТИ	
ЗАЗЕМЛЕННОЙ НЕЙТРАЛЬЮ С ИСПОЛЬЗОВАНИЕМ <i>PSCA</i> .	DЙ
ПРОГРАММЫ FASTVIEW	
14.1. Краткие теоретические сведения	
14.1.1. Классификация методов ОМП	. 350
14.1.2. Основы определения места короткого замыкания	
параметрам аварийного режима	

14.1.3. Принцип действия рассматриваемого алгоритма ОМП	ПО
ПАР3	358
14.2. Исходные данные для моделирования	363
14.3. Формирование модели в среде <i>PSCAD</i>	364
14.4. Определение места повреждения (ОМП)	381
14.4.1. ОМП сетей с заземлённой нейтралью (односторонн	ий
замер)3	382
14.4.2. ОМП с помощью двухстороннего замера 3	385
14.4.3. Выбор расчетных параметров R1, X1, R0, X0 из PSCAD 3	386
14.4.4. Выбор расчетных параметров Rm и Xm из PSCAD 3	388
14.4.5. Отображение результата ОМП 3	390
14.5. Ручной расчет параметров линии электропередачи 3	390
14.6. Экспериментальная часть. Расчет ОМП в программе FastView 3	392
14.6.1. Односторонний метод ОМП (опыт 1, КЗ ф.А на землю) 3	392
14.6.2. Двусторонний метод ОМП (опыт 2, КЗ ф.А на землю) 3	393
14.6.3. Результаты расчета ОМП	395
15. РЕАЛИЗАЦИЯ МНОЖЕСТВА ЭКСПЕРИМЕНТОВ С ПОЛУЧЕНИВ	Ξ M
СТАТИСТИЧЕСКИХ ДАННЫХ	397
15.1. Модель 1 — радиальная электрическая сеть 220/10 кВ 3	398
15.1.1. Исходные данные для моделирования	
15.1.2. Руководство к созданию основных элементов модели 1 2	
15.1.3. Йнструменты для формирования статистических выборок	
PSCAD2	
15.1.4. Формирование статистических выборок для выбранн	юй
схемы	
15.1.5. Экспериментальная часть	
15.2. Модель 2 – радиальная электрическая сеть 110 кВ с отпаячны	
подстанциями4	
15.2.1. Исходные данные для моделирования	
15.2.2. Руководство к созданию основных элементов модели 2 2	
15.2.3. Формирования логики управления процессом расчета и запи	
данных	
15.2.4. Настройки процесса моделирования	
15.2.5. Экспериментальная часть	
СПИСОК ЛИТЕРАТУРЫ4	
ПРИЛОЖЕНИЯ	